SENATUS: An Approach to Joint Traffic Anomaly Detection and Root Cause Analysis

نویسندگان

  • Atef Abdelkefi
  • Yuming Jiang
  • Sachin Sharma
چکیده

In this paper, we propose a novel approach, called SENATUS, for joint traffic anomaly detection and root-cause analysis. Inspired from the concept of a senate, the key idea of the proposed approach is divided into three stages: election, voting and decision. At the election stage, a small number of senator flows are chosen to represent approximately the total (usually huge) set of traffic flows. In the voting stage, anomaly detection is applied on the senator flows and the detected anomalies are correlated to identify the most possible anomalous time bins. Finally in the decision stage, a machine learning technique is applied to the senator flows of each anomalous time bin to find the root cause of the anomalies. We evaluate SENATUS using traffic traces collected from the Pan European network, GEANT, and compare against another approach which detects anomalies using lossless compression of traffic histograms. We show the effectiveness of SENATUS in diagnosing anomaly types: network scans and DoS/DDoS attacks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism

Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...

متن کامل

Detecting Denial of Service Message Flooding Attacks in SIP based Services

Increasing the popularity of SIP based services (VoIP, IPTV, IMS infrastructure) lead to concerns about its ‎security. The main signaling protocol of next generation networks and VoIP systems is Session Initiation Protocol ‎‎(SIP). Inherent vulnerabilities of SIP, misconfiguration of its related components and also its implementation ‎deficiencies cause some security concerns in SIP based infra...

متن کامل

Detection of Mo geochemical anomaly in depth using a new scenario based on spectrum–area fractal analysis

Detection of deep and hidden mineralization using the surface geochemical data is a challenging subject in the mineral exploration. In this work, a novel scenario based on the spectrum–area fractal analysis (SAFA) and the principal component analysis (PCA) has been applied to distinguish and delineate the blind and deep Mo anomaly in the Dalli Cu–Au porphyry mineralization area. The Dalli miner...

متن کامل

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.09008  شماره 

صفحات  -

تاریخ انتشار 2017